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Abstract. The optical properties of PbTiO3 were studied from first principles using the density functional
theory. The dielectric functions and optical constants are calculated using the full potential–linearized
augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA). The
theoretical calculated optical properties and energy loss (EEL) spectrum yield a static refractive index
of 2.83 and a plasmon energy of 23.1 eV for cubic phase. The effective electron number at low energy
saturates near 20 eV with the value of 18.1 for the effective electron number. In the tetragonal phase the
static refractive index decreases to 2.59 and yields a plasmon energy of 22.7 eV.

PACS. 31.15.Ar Ab initio calculations – 78.20.-e Optical properties of bulk materials and thin films –
78.20.Ci Optical constants (including refractive index, complex dielectric constant, absorption, reflection
and transmission coefficients, emissivity)

1 Introduction

The development of computational methods in the
electronic structure community has led to a new class
of first principles approaches, based upon a full solution
of the quantum mechanical ground state of the electron
system within the local-density approximation (LDA) to
KohnSham density functional theory (DFT) [1]. In prin-
ciple, these methods take as their only inputs the atomic
numbers of the constituent atoms. The modeling of elec-
tronic and optical properties, by means of first-principles
calculations, has become a very useful tool for understand-
ing about the structural, electronic and optical properties
of the various materials.

Ferroelectric perovskite-type titanates such as PbTiO3

(PT) have various attractive properties from the electrical
and optical viewpoint. These include piezoelectric trans-
ducers and actuators, nonvolatile ferroelectric memories,
dielectrics for microelectronics and wireless communica-
tion, pyroelectric arrays, and nonlinear optical applica-
tions. In addition, (PT) has a large electro-optic coefficient
and high photorefractive sensitivity, therefore can be used
as an optical sensor [2]. It is also being seriously consid-
ered for many other optical devices. In its low temperature
phase, (PT) has tetragonal symmetry and is ferroelectric,
which belongs to the P4mm symmetry group. At 763 K
it undergoes a transition to a cubic and paraelectric state
having space group Pm3m [3]. However, an understand-
ing of optical properties, from the viewpoint of material
science, for this structure is also significant.

In the present work the optical properties of (PT) in
both the cubic and tetragonal phases have been studied
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using the full potential linearized augmented plane wave
method (FP-LAPW). The results, in comparison with the
published data, are in good agreement with the experi-
mental and previous theoretical results.

2 Method of calculation

Calculation of the optical properties, of (PT) were carried
out with a self-consistent scheme by solving the Kohn-
Sham equation using a FP-LAPW method in the frame-
work of the DFT along with the generalized gradient ap-
proximation (GGA) method [4,5] by WIEN2k codes [6].

In the FP-LAPW method, space is divided into two re-
gions, a spherical “muffin-tin” around the nuclei in which
radial solutions of Schrödinger equation and their energy
derivatives are used as basis functions, and an “intersti-
tial” region between the muffin tins (MT) in which the
basis set consists of plane waves. There is no pseudopo-
tential approximation and core states are calculated self-
consistently in the crystal potential. Also, core states are
treated fully relativistically while valence and semi-core
states are treated semi-relativistically (i.e. ignoring the
spin-orbit coupling). The cut-off energy, which defines the
separation of the core and valance states, was chosen as
–6 Ryd.

The complex dielectric tensor was calculated, in this
program, according to the well-known relations [7]:

Im εαβ(ω) =

4πe2

m2ω2

∑

c,v

∫
dk〈ck|pα|vk〉〈vk|pβ|ck〉δ(εck

−εvk
−ω)

(1)
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Re εαβ(ω) = δαβ +
2
π

P

∞∫

0

ω′Imεαβ(ω′)
ω′2 − ω2

dω′ (2)

and the optical conductivity is given by:

Re σαβ(ω) =
ω

4π
Imεαβ(ω). (3)

In equation (1), ck and vk are the crystal wavefunctions
corresponding to the conduction and the valance bands
with crystal wave vector k (Fig. 4). In equation (3) the
conductivity tensor relating the interband current density
jα in the direction α which flows upon application of an
electric field Eβ in direction β in which the sum in equa-
tion (1) is over all valence and conduction band states
labeled by v and c.

Moreover, the complex dielectric constant of a solid is
given as:

ε(ω) = ε1(ω) + iε2(ω) (4)

Here, real and imaginary parts are related to optical con-
stants n(ω) and k(ω) as:

ε1(ω) = n2(ω) − k2(ω)
ε2(ω) = 2n(ω)k(ω). (5)

The other optical parameters, such as energy-loss spec-
trum and oscillator strength sum rule are immediately
calculated in terms of the components of the complex di-
electric function [7].

3 Results and discussion

The calculations first were carried out using the experi-
mental data for lattice constants (a = b = c = 3.95 Å)
in the cubic phase. Then by minimizing the ratio of the
total energy of the crystal to its volume (volume opti-
mizing) the theoretical lattice constants were obtained
(a = b = c = 3.98 Å).

For the tetragonal structure, we used the crystallo-
graphic data with lattice constant of a = b = 3.902
and c = 4.156 Å [3]. The calculated lattice constant af-
ter volume optimization is a = b = 3.944 and c = 4.2
[c/a = 1.065, V0 = 441.36 (au)3].

In order to reduce the time of the calculations we used
the symmetries of the crystal structure and some other
approximations for simplicity. The calculation was per-
formed with 1000 k-points in the cubic and 300 k-points
for the tetragonal phase.

The self-consistent process, for both phases, after
11 cycles had convergence of about 0.0001 in the eigen-
values in which for the cubic phase 559 plane waves and
for the tetragonal phase 2971 plane waves were produced.
Under these conditions the values of the other parameters
were Gmax = 14, RMT(Pb) = 2.4 au, RMT(Ti) = 1.7 au,
RMT(O) = 1.6 au. The iteration halted when the total
charge adjustment was less than 0.0001 between steps.
The broadening parameters 0.1 eV were chosen for gamma
for Lorentz broadening.

Fig. 1. Real and imaginary part of the dielectric function for
(PT) in cubic phase.

Fig. 2. Real and imaginary part of the of the optical conduc-
tivity for (PT) in cubic phase.

Fig. 3. The optical constants n(ω) and k(ω) for (PT) in the
cubic phase.

3.1 Paraelectric phase

3.1.1 Dielectric function

We calculated both the electronic and optical properties
of (PT) in the cubic phase, but here we only present the
optical properties. The detailed description for the elec-
tronic properties is given elsewhere [8].

The real and the imaginary parts of the dielectric func-
tions are shown in Figure 1 for (PT) in the cubic phase.
The value of the main peak of ε1(ω) curve is 12.68 at en-
ergy of 2.74 eV and for ε2(ω) is 11.51 at the energy equal
3.89 eV.

The real and the imaginary parts of optical conductiv-
ity are shown in Figure 2 for (PT) in cubic phase.

In Figure 3 the optical constant n(ω) and k(ω) is shown
for (PT) in cubic phase.
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Table 1. Refractive index in cubic phase calculated by various methods.

Methods Refractive index (n)
Experimental [10] at 589 nm ∼2.94 (ε = 8.64)
Theory
FP-LDA [9] (static) ∼2.87(ε0=8.24)
FP-LAPW (GGA96) (static) (this work) ∼2.83(ε0 = 8.1)
FP-LAPW (GGA96) at 588 nm (this work) ∼2.87 (ε = 8.25)

The static refractive index value for (PT) in the cubic
phase calculated in this work, and the values obtained by
other methods are summarized in Table 1.

Referring to Table 1, it can be seen that the calculated
refractive index in this work is smaller than the values
measured experimentally. This difference may be mainly
due to the calculated band gap value 1.7 eV (without em-
pirical correction factor) in which is smaller than the re-
ported experimental band gap value, 3.0–4.5 eV [11].

3.1.2 Electron energy loss spectroscopy

EELS is a valuable tool for investigating various aspects of
materials [12]. It has the advantage of covering the com-
plete energy range including non-scattered and elastically
scattered electrons (Zero Loss). At intermediate energies
(typically 1 to 50 eV) the energy losses are due primarily
to a complicated mixture of single electron excitations and
collective excitations (plasmons). The positions of the sin-
gle electron excitation peaks are related to the joint den-
sity of states between the conduction and valence bands,
whereas the energy required for the excitation of bulk plas-
mons depends mainly on the electron density in the solid.
Here electrons, which excite the atoms electrons of the
outer shell is called Valence Loss or valence interaband
transitions (Fig. 4). At higher energies, typically a few
hundred eV, edges can be seen in the spectrum, indicat-
ing the onset of excitations from the various inner atomic
shells to the conduction band. In this case the fast elec-
trons excite the inner shell electrons (Core Loss) or induce
core level excitation of Near Edge Structure (ELNES) and
XANES. The edges are characteristic of particular ele-
ments and their energy and height can be used for ele-
mental analysis.

In the case of interband transitions, which consist
mostly of plasmon excitations, the scattering probability
for volume losses is directly connected to the energy loss
function. One can then calculate the EEL spectrum from
the following relations [7]:

εαβ(ω) = ε1 + iε2 and EELSpectrum =

Im[−1/εαβ(ω)] =
ε2

ε2
1 + ε2

2

. (6)

In Figure 5 the energy loss function is plotted for (PT)
in cubic phase. These peaks can, however, have different
origins such as charge carrier plasmons and interband or
intraband excitations. The energy of the maximum peak
of Im[−ε−1(E)] at 22.9 eV is assigned to the energy of
the volume plasmon �ωp. The first peak at 11.7 eV and

Fig. 4. Valence interbands transitions.

Fig. 5. Electron energy loss spectrum Im[−ε−1(E)] for PT in
cubic phase.

second peak at 18 eV originates from O-2p to Ti-3d and
Pb-6p orbitals, respectively. The value of �ωp obtained in
this work and for free electron is given in Table 2.

For free electrons the plasmon energy is calculated ac-
cording to the following model:

�ωe
p = �

√
ne2

ε0m
. (7)

If we use this model, then what should be the number of
valance electrons per (PT) molecule, N , used to calculate
the density of valance electrons, n, and thus the plasmon
energy in equation (7)? The partial DOS from the Pb, Ti
and O atoms are shown in Figure 6. From the PDOS of the
Pb and O-atoms it can be seen that the Pb-5d and O-2s
state has a narrow band separated from the upper valance
band by nearly–11 eV, therefore the participation of the
Pb-5d and O-2s states in the volume plasmon excitation
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Table 2. (PT) plasmon energy �ωp of the energy loss function in cubic phase calculated by this method and free electron.

Methods Plasmon energy �ωp(eV)
FP-LAPW (GGA96) (this work) ∼23.1
Free electron (ignoring Pb-5d and O-2s states) ∼26.5
Free electron ∼33.0

Fig. 6. The total DOS of (PT) in cubic phase. The zero of the
energy was set at the top of valance band.

at low energies are rather weak. If we take only the con-
tribution of 4f14, 6s2 and 6p2 electrons of Pb, 3d2 and
4s2 of Ti and 2p4 of O (ignoring the contribution of 5d10

and 2s2 electron of Pb and O atom respectively) then we
have N = 34 and the free electron plasmon energy will
be 26.5 eV. Otherwise, with all valance electrons of Pb,
Ti and O atoms (i.e. N = 50), the free electron plasmon
would be 33.0 eV. We will also see from sum rule data that
N = 34 is a reasonable value for the valance electrons per
(PT) molecule.

At low energy the transitions have been taken into
account from:

O-2p → Ti-3d (t2g) Pb-6s → Ti-3d(t2g)
O-2p → Ti-3d(eg) Pb-6s → Ti-3d(eg)
O-2p → Pb-6p Pb-6s → Pb-6p
The contribution from Ti-4s and Pb-4f are so small

can be neglected and participation from Pb-5d and O-2s
because have a narrow bands separated from the valance
band by nearly 18 eV are rather weak. Therefore the totals
of 6 are the major bands that contribute. A simplified en-
ergy level diagram to show these transitions at low energy
is shown in Figure 7.

3.1.3 Oscillator strength sum rule

Another way to consider the number of electrons involved
in the valance interband transition is to evaluate the sum
rule. The effective number of valance electron per unit
cell contributing to a transition up to frequency ω can be
calculated using the sum rule [7]:

neff (ω) =
∫ ω

0

σ(ω′)ω′dω′. (8)

The oscillator strength sum rule for (PT) is shown in Fig-
ure 8. The effective electron number up to 2 eV is zero

Fig. 7. Simplified energy level diagram for transitions from
valance to conduction band at low energy for PbTiO3.

Fig. 8. Calculated oscillator strength sum rule for (PT) in
cubic phase.

(below band gap) then rises rapidly at low energy and
saturates at about 20 eV, with a value of 18.1 for the ef-
fective electron number. However, in this transition, the
contribution of O-2p bands to neff (E) is the largest, fol-
lowed by Ti=O hybridized bands, and finally the Pb-4f ,
Ti-4s and O-2s bands contribution which is least.

The relatively small neff (E) confirms, to some extent,
the assumption that we may ignore the contribution of the
Pb-5d and O-2s states. This is due to the stronger localiza-
tion of deep laying these states, which inhibits transfer at
low energies to high-energy interband transitions (Fig. 6).
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Fig. 9. Real part of dielectric function for (PT) in tetragonal
phase along the a and c crystallographic axes.

Fig. 10. Imaginary part of dielectric function for (PT) in
tetragonal phase along the a and c crystallographic axes.

3.2 Ferroelectric phase

3.2.1 Dielectric function

Figures 9 and 10 show the real and imaginary parts of the
dielectric functions for (PT) in tetragonal phase along the
a(−x) and c(−z) crystallographic axes.

The general behavior of ε1(ω) for the tetragonal phase
curve is similar to that for the cubic phase. The static
dielectric constant for the tetragonal phase has been de-
creased to 6.45. The main peak of ε2(ω) for tetragonal
phase curve has two peaks in the range of 4–8 eV.

The real and the imaginary parts of the optical con-
ductivity are shown in Figures 11 and 12 for (PT) in the
tetragonal phase along the a(−x) and c(−z) crystallo-
graphic axes.

In Figure 13 the optical constant na(ω) and k(ω) is
shown for (PT) in tetragonal phase along a(−x) crystal-
lographic axis .

Referring to Figure 1, it can be seen that the calculated
refractive index (na) for the tetragonal phase is 2.59 and
is smaller than the value in the cubic phase.

Fig. 11. Imaginary part of optical conductivity for (PT) in
the tetragonal phase along the a and c crystallographic axes.

Fig. 12. Real part of optical conductivity for (PT) in the
tetragonal phase along the a and c crystallographic axes.

Fig. 13. The optical constant na(ω) and k(ω) for (PT)
in tetragonal phase along the a(−x) crystallographic axis.

The refractive index value for (PT) in tetragonal phase
calculated in this work, and the values obtained by other
methods are summarized in Table 3.

3.2.2 Electron energy loss spectroscopy

In Figure 14 the energy loss function is plotted for
tetragonal phase. The energy of the main maximum of
Im[−ε−1(E)], or the energy of volume plasmon �ωp, for



468 The European Physical Journal B

Table 3. (PT) static refractive index in cubic phase calculated by various methods.

Methods Static refractive index (na)
Experimental
Thin film by K MOCVD method at 632.8 nm [13] ∼2.64
Thin film by metalorganic chemical vapor at 800 nm [14] ∼2.35
Single crystal at 632.8 nm [15] ∼2.7

Theory
point-dipole approach at 488 nm [16] ∼2.77
FP-LAPW (GGA96) (this work) at 465 nm ∼2.64
FP-LAPW (GGA96) (this work) at 643 nm ∼2.62
FP-LAPW (GGA96) (this work) at 830 nm ∼2.61

Fig. 14. Calculated EELS for (PT) in tetragonal phase.

Fig. 15. Calculated total DOS for (PT) in tetragonal phase.

the tetragonal phase is smaller than cubic phase and
equal 22.7 eV. The calculated band Structure shows the
electronic band structure for the tetragonal phase yield
an indirect band gap of 2.0 eV at X-Γ direction as re-
ported somewhere else [7]. In comparison to cubic phase
the top valance band due to hybridization along the polar
c-direction is pushed down. The others two peaks are at
17.6 eV and 12.1 eV

As we can see from the total DOS of tetragonal phase,
Figure 15, the Pb-5d and O-2s deep lying states are lo-
calized and the probability to transfer at low energy to
high-energy interband transitions is less likely.

3.2.3 Oscillator strength sum rule

Figure 16 shows the neff (E) for (PT) in tetragonal phase.
The curve is similar to that of cubic phase, the number

Fig. 16. Calculated oscillator strength sum rule (PT) in
tetragonal phase.

of effective electron, neff (E), rises rapidly at low energy
to a value near 4 eV, and then there is another rise, and
finally, saturation at a value near 20 eV with a value of 18
for the effective electron number. However, in this transi-
tion, the contribution O-2p to Ti-3d and Pb-6p orbitals,
respectively to neff (E) is most dominated.

4 Conclusions
We have calculated the optical properties of (PT) in cubic
and tetragonal phases using the full potential–linearized
augmented plane wave (FP-LAPW) method with the
generalized gradient approximation (GGA). The calcula-
tions show a static refractive index of 2.81 and an EEL
spectrum of 22.9 eV for the cubic phase. The effective
electron number at low energy saturates near 20 eV with
the value of 18.1 for the effective electron number. In the
tetragonal phase the static refractive index has reduced to
2.59. The effective electron number for ferroelectric phase
is the same for paraelectric phase. Ignoring the contribu-
tion of 5d10 and 2s2 electron of Pb and O atom respec-
tively, then we have N = 34 and the free electron plasmon
energy will be 23.4 eV. It seems that N = 34 is a reason-
able value for the valance electrons per (PT) molecule.

The authors are grateful to Professor P. Blaha (at Vienna Uni-
versity of Technology Austria) for his technical assistance in
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